Momentum Transfer in Triboelectric Nanogenerators

Author:

Yu Zeyang12,Zhang Yuyang34,Willatzen Morten12,Shao Jiajia12ORCID,Wang Zhong Lin125ORCID

Affiliation:

1. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P. R. China

2. School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. School of Material Science and Engineering Jilin University Changchun 130012 PR China

4. Department of Materials University of Manchester Manchester M13 9PL UK

5. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332‐0245 USA

Abstract

AbstractThe triboelectric nanogenerator (TENG) reflects a prospering field, that uses Maxwell's displacement current as the driving force to transform mechanical energy into electricity. Based on the law of energy conservation, many theoretical models of TENGs are proposed to provide a detailed insight into how energy flows and transformation in the energy harvesting system, while ignoring a hidden but extremely important point about TENG's momentum transfer and conservation. Here a series of analysis is presented for the momentum transfer and conservation in TENGs based on Maxwell equations and stress tensor. Using a time‐dependent 3D mathematical model, it is elaborated that how the time‐ and spatial‐dependent momentum current is influenced by the field and the dielectric materials, demonstrating that momentum is overall conserved for a TENG. In other words, the TENG device can not only convert mechanical energy into electricity, but it is also able to transfer momentum. Momentum transfer is another important characteristic of TENGs, and finally, the essential differences and similarities among the momentum transfer, energy transfer, and energy transformation in TENGs are systematically discussed. This study will certainly serve as a new starting point for exploring momentum transfer and conservation in the TENG momentum transfer system.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3