The Anomalous Photo‐Nernst Effect of Massive Dirac Fermions In HfTe5

Author:

Singh Maanwinder P.12,Kiemle Jonas12,Xu Chen34,Schmunk Waldemar12,Dong Qingxin56,Chen Genfu567,Meng Tobias3ORCID,Kastl Christoph12ORCID

Affiliation:

1. Walter Schottky Institute and Physik‐Department Technical University of Munich Am Coulombwall 4a 85748 Garching Germany

2. Munich Center for Quantum Science and Technology (MCQST) Schellingstr. 4 80799 Munich Germany

3. Institute of Theoretical Physics and Würzburg‐Dresden Cluster of Excellence ct.qmat Technische Universität Dresden 01062 Dresden Germany

4. Department of Physics and Materials Science University of Luxembourg Luxembourg L‐1511 Luxembourg

5. Institute of Physics and Beijing National Laboratory for Condensed Matter Physics Chinese Academy of Sciences Beijing 100190 China

6. School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China

7. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China

Abstract

AbstractThe quantum geometric Berry curvature results in an anomalous correction to the band velocity of crystal electrons with a corresponding transverse (thermo)electric conductivity. However, time‐reversal symmetry typically constrains the direct observation and exploitation of anomalous transport to magnetic compounds. Here, it is demonstrated the anomalous Hall and Nernst conductivities are essential for describing the optoelectronic transport in thin films of the non‐magnetic, weakly gapped semimetal HfTe5 subject to an external magnetic field. A focused photoexcitation adresses the symmetries of the local Nernst conductivity, which unveils a hitherto hidden, anomalous photo‐Nernst effect of three‐dimensional (3D) massive Dirac fermions. The experimental temperature and density dependencies are compared with a semiclassical Boltzmann transport model. For HfTe5 thin films with the Fermi level close to the gap, the model suggests that the anomalous photo‐Nernst currents originate from an intrinsic Berry curvature mechanism, where the Zeeman interaction effectively breaks time‐reversal symmetry of the massive Dirac fermions already at moderate external magnetic fields.

Funder

Deutsche Forschungsgemeinschaft

Recherches Scientifiques Luxembourg

European Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3