Comparative transcriptome analysis reveals the contribution of amino acid transporters to acid tolerance in Lactococcus lactis

Author:

Zhu Zhengming12ORCID,Zhang Tongrong3,Yang Zhihan3,Zhang Juan2

Affiliation:

1. College of Food Science and Light Industry Nanjing Tech University Nanjing China

2. School of Biotechnology Jiangnan University Wuxi Jiangsu China

3. College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China

Abstract

AbstractAmino acid transporters are promising targets for engineering acid‐tolerant strains of Lactococcus lactis. However, the simple overexpression of transporters alone is insufficient to achieve a highly acid‐resistant phenotype. This study investigated the effects of amino acid transporters on the acid‐stress tolerance of L. lactis. Here, we first verified the contribution of amino acid transporters to acid tolerance by overexpressing the ctrA, glnP, and glnQ genes in L. lactis. Transcriptome analysis revealed that most genes associated with specific amino acid transport, pyrimidine metabolism, and functional proteins, were upregulated in the overexpression strains. Among them, arginine biosynthesis (argG and argH), amino acid transport (yjeM and azlC), and pyrimidine metabolism were considered to be the most important regulatory mechanisms. Importantly, metabolite profiling revealed that the overexpression strains had higher intracellular levels of amino acids, particularly aspartate, glutamate, and arginine at low pH, as well as higher intracellular ATP levels, which was consistent with the corresponding gene‐expression levels. Finally, the simultaneous overexpression of glnP and glnQ led to a further improvement of acid tolerance in L. lactis. This study reveals the regulatory mechanisms of amino acid transporters, and provides a novel strategy for achieving higher acid tolerance via positive tandem expression approaches.

Publisher

Wiley

Subject

Food Science

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3