Intramuscular administration of fractalkine modulates mitochondrial properties and promotes fast glycolytic phenotype

Author:

Swalsingh Gourabamani1ORCID,Pani Punyadhara1,Senapati Unmod1,Sahu Bijayashree1,Pani Sunil1,Pati Benudhara1,Rout Subhasmita1,Bal Naresh C.1ORCID

Affiliation:

1. School of Biotechnology KIIT University Bhubaneswar Odisha India

Abstract

AbstractA newly categorized myokine called fractalkine (CX3CL1) has been associated with divergent conditions such as obesity, tissue inflammation, and exercise. CX3CL1 works through specific membrane‐bound receptors (CX3CR1) found in various tissues including skeletal muscles. Studies indicate CX3CL1 induces muscles to uptake energy substrates thereby improving glucose utilization and countering diabetes. Here, we tested if the administration of purified CX3CL1 directly into mice skeletal muscles affects its histoarchitecture, mitochondrial activity, and expression of metabolic proteins. We analyzed four muscles: two upper‐limb (quadriceps, hamstrings) and two lower‐limb (tibialis anterior, gastrocnemius), contralateral leg muscles were taken as controls. The effects of CX3CL1 treatment on histoarchitecture, mitochondrial activity, and expression of metabolic proteins in muscles were characterized. We used histochemical staining succinate dehydrogenase (SDH)/cytochrome c oxidase (COX), myosin ATPase, alkaline phosphatase (ALP) to evaluate the mitochondrial activity, fiber types, and vascularization in the muscles, respectively. Western blotting was used to evaluate the expression of proteins associated with mitochondrial metabolism (OXPHOS), glycolysis, and vascularization. Overall, this study indicates CX3CL1 primarily modulates mitochondrial metabolism and shifts substrate preference toward glucose in the skeletal muscle. Evidence also supports that CX3CL1 stimulates the relative composition of fast fiber types, influencing selection of energy substrates in the skeletal muscle.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Science and Engineering Research Board

Indian Council of Medical Research

Council of Scientific and Industrial Research, India

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3