Silicone‐containing polyurea elastomer possessing main‐chain boron–oxygen bonds with delayed stress relaxation and improved adhesive properties

Author:

Zhang Shilong1,Xiong Youhao1,Wang Yangwei2,Ma Yuqi1,Li Jialiang1,Jiang Chaobo1,Wang Ce1,Zhu Yanling1,Zhao Yongsheng12ORCID,Zhang Guangcheng1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Analytical and Testing Center, Northwestern Polytechnical University Xi'an China

2. National Key Laboratory of Science and Technology on Materials under Shock and Impact Beijing Institute of Technology Beijing China

Abstract

AbstractPolyurea (PU) elastomers have attracted considerable attention in the field of protective polymeric coatings. In this work, a dithiol‐terminated boronic ester was synthesized and used to incorporate dynamic boron–oxygen (B–O) bonds in the PU main chain based on thiol isocyanate while amino‐terminated polydimethylsiloxane (PDMS) was introduced to retain good chain flexibility. The modified PU elastomer was found to have a microphase‐separated structure in which the hard blocks served as physical crosslinks. The glass transition temperature (Tg) slightly increases when dynamic B–O bonds exist while further introduction of PDMS soft segment can lower Tg to −55.63 °C. The introduction of dynamic B–O bonds and diminished hydrogen bonding led to a decrease in mechanical strength and elongation at break. Interestingly, the simultaneous incorporation of PDMS and dynamic B–O bonds is favorable for strain rate dependence and suppressing stress relaxation. The potential for bond‐exchange interactions between the dynamic B–O bonds and hydroxyl groups on metal surfaces substantially improved the adhesion of the PU elastomer to metal substrates. Therefore, our work can offer valuable insights for the structural design of functional PU coatings tailored for anti‐impact applications. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3