Cloning, expression, and characterization of a novel sericin‐like protein

Author:

Bostan Fatmanur1,Surmeli Nur Basak2ORCID

Affiliation:

1. Program in Biotechnology and Bioengineering İzmir Institute of Technology Gülbahce Urla Izmir Turkey

2. Department of Bioengineering İzmir Institute of Technology Gülbahce Urla Izmir Turkey

Abstract

AbstractSilk consists of two proteins called fibroin and sericin. While fibroin is used in the textile industry and has various biomaterial applications, sericin has been considered as waste material until recently. Sericin is a multicomponent protein and it has important properties such as biocompatibility, biodegradability, cryoprotectivity, and antioxidant. Sericin from silkworm cocoons can be obtained by chemical, enzymatic, and heat treatment methods. However, sericin obtained with these treatment methods is not of consistent and high quality. Moreover, the exposure of sericin to harsh conditions during extraction leads to inconsistencies in the composition and structure of the sericin obtained. The inconsistencies in sericin structure and composition decrease application of sericin as a biomaterial. Here, we produce a sericin‐like protein (Ser4mer) with native sequence of sericin encoding four repeats of the conserved 38 amino acid motif recombinantly in Escherichia coli and characterize its structural properties. Ser4mer protein shows similar structure to native sericin and higher solubility than previously obtained recombinant sericin‐like proteins. Recombinant production of a soluble sericin‐like protein will significantly expand its applications as a biomaterial. In addition, recombinant production of silk proteins will allow us to understand sequence–structure relationships in these proteins.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3