Mild Quantitative One Step Removal of Macrophages from Cocultures with Human Umbilical Vein Endothelial Cells Using Thermoresponsive Poly(Di(Ethylene Glycol)Methyl Ether Methacrylate) Brushes

Author:

Hebel Diana1,Schönherr Holger1ORCID

Affiliation:

1. Department of Chemistry and Biology University of Siegen Physical Chemistry I & Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ) Adolf‐Reichwein‐Str. 2 57076 Siegen Germany

Abstract

AbstractThe authors report on a mild, label‐free, and fast method for the separation of human umbilical vein endothelial cells (HUVEC), which are relevant cells, whose use is not limited to studies of endothelial dysfunction, from cocultures with macrophages to afford HUVEC in ≈100% purity. Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes with a dry thickness of (5 ± 1) nm afford the highly effective one‐step separation by selective HUVEC detachment, which is based on the brushes' thermoresponsive behavior. Below the thermal transition at 32 °C the brushes swells and desorbs attached proteins, resulting in markedly decreased cell adhesion. Specifically, HUVEC and macrophages, which are differentiated from THP‐1 monocytes, are seeded and attached to PDEGMA brushes at 37°C. After decreasing the temperature to 22°C, HUVEC shows a decrease in their cell area, while the macrophages are not markedly affected by the temperature change. After mild flushing with a cell culture medium, the HUVEC can be released from the surface and reseeded again with ≈100% purity on a new surface. With this selective cell separation and removal method, it is possible to separate and thereby purify HUVEC from macrophages without the use of any releasing reagent or expensive labels, such as antibodies.

Funder

European Regional Development Fund

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3