Introducing Dynamicity: Engineering Stress Relaxation Into Hydrogels Via Thiol‐Ene Modified Alginate for Mechanobiological in vitro Modeling of the Cornea

Author:

Feliciano Antonio. J.1ORCID,Grant Rhiannon2,Fernández‐Pérez Julia1,Giselbrecht Stefan2,Baker Matthew. B.1ORCID

Affiliation:

1. Department of Complex Tissue Regeneration, MERLN Institute Maastricht University Maastricht Netherlands

2. Department of Instructive Biomaterials Engineering, MERLN Institute Maastricht University Maastricht Netherlands

Abstract

AbstractDeveloping biomaterials for corneal repair and regeneration is crucial for maintaining clear vision. The cornea, a specialized tissue, relies on corneal keratocytes, that respond to their mechanical environment. Altering stiffness affects keratocyte behavior, but static stiffness alone cannot capture the dynamic properties of in vivo tissue. This study proposes that the cornea exhibits time‐dependent mechanical properties, similar to other tissues, and aims to replicate these properties in potential therapeutic matrices. First, the cornea's stress relaxation properties are investigated using nanoindentation, revealing 15% relaxation within 10 seconds. Hydrogel dynamicity is then modulated using a specially formulated alginate‐PEG and alginate‐norbornene mixture. The tuning of the hydrogel's dynamicity is achieved through a photoinitiated norbornene‐norbornene dimerization reaction, resulting in relaxation times ranging from 30 seconds to 10 minutes. Human primary corneal keratocytes are cultured on these hydrogels, demonstrating reduced αSMA (alpha smooth muscle actin) expression and increased filopodia formation on slower relaxing hydrogels, resembling their native phenotype. This in vitro model can enable the optimization of stress relaxation for various cell types, including corneal keratocytes, to control tissue formation. Combining stress relaxation optimization with stiffness assessment provides a more accurate tool for studying cell behavior and reduces mechanical mismatch with native tissues in implanted constructs.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3