Hybrid machine learning models for groundwater level prediction in a snow‐dominated region: An evaluation of EEMD, VMD and EWT decomposition techniques

Author:

Gezici Kadir1,Katipoğlu Okan Mert2,Şengül Selim1ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering Atatürk University Erzurum Turkey

2. Faculty of Engineering and Architecture, Department of Civil Engineering Erzincan Binali Yıldırım University Erzincan Turkey

Abstract

AbstractWater scarcity is a pressing issue, intensified by factors such as population growth and industrialization. Hence, it is crucial to monitor, conserve and analyse groundwater resources, which are essential sources of clean and usable water. This study examines changes in groundwater levels (GWLs) in northeastern Turkey's mountainous and snow‐covered area. The primary objective is to assess the effectiveness of integrated machine learning models, specifically, the extreme learning machine (ELM) technique combined with signal decomposition techniques such as ensemble empirical mode decomposition (EEMD), variational mode decomposition (VMD) and empirical wavelet transform (EWT) for monthly GWL prediction models. Seventy percent of the accessible data is allocated for training, while 30% is designated for testing. A correlation matrix involving precipitation, temperature, relative humidity and GWL parameters is generated with inputs that possess significant correlations being selected, such as GWLt−1, GWLt−2, RHt, RHt−1 and RHt−2. To evaluate model results, various metrics, including mean squared error, mean absolute error, mean absolute percentage error, mean bias error, bias factor, determination coefficient, Nash‐Sutcliffe efficiency, as well as tools such as box plots, Taylor diagrams and radar charts, are utilized to compare outcomes during the interpretation phase. The results of the analyses show that applying data decomposition methods such as EEMD, VMD and EWT significantly improves the performance of the ELM algorithm in predicting GWLs. VMD‐ELM is the most accurate for GWL forecasting among the approaches examined. The R2 values of the most successful models established in the two wells are 0.993 and 0.905. The outcomes of this research hold significance for decision‐makers and policymakers as it offers informative insights into aquifer surveillance, irrigation strategizing and efficient administration of water resources.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Diagnosis of DC Motors using PSO-SVM Classifier combined with VMD-SVD Technique;2024 5th International Conference on Computer Engineering and Application (ICCEA);2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3