Doubly adaptive biased coin design to improve Bayesian clinical trials with time‐to‐event endpoints

Author:

Cao Wenhao1ORCID,Zhu Hongjian2ORCID,Wang Li3,Zhang Lixin4ORCID,Yu Jun5

Affiliation:

1. Division of Biostatistics and Health Data Science University of Minnesota Minneapolis Minnesota USA

2. Statistical Innovation Group AbbVie Inc., Virtual Office Sugar Land Texas USA

3. Statistical Innovation Group AbbVie Inc. North Chicago Illinois USA

4. Center for Data Science and School of Mathematical Sciences Zhejiang University Hangzhou China

5. Medical Affairs and Health Technology Assessment Statistics AbbVie Inc., Virtual Office Sugar Land Texas USA

Abstract

Clinical trialists often face the challenge of balancing scientific questions with other design features, such as improving efficiency, minimizing exposure to inferior treatments, and simultaneously comparing multiple treatments. While Bayesian response adaptive randomization (RAR) is a popular and effective method for achieving these objectives, it is known to have large variability and a lack of explicit theoretical results, making its use in clinical trials a subject of concern. It is desirable to propose a design that targets the same allocation proportion as Bayesian RAR and achieves the above objectives but addresses the concerns over Bayesian RAR. We propose the frequentist doubly adaptive biased coin designs (DBCD) targeting ethical allocation proportions from the Bayesian framework to satisfy different objectives in clinical trials with time‐to‐event endpoints. We derive the theoretical properties of the proposed adaptive randomization design and show through comprehensive numerical simulations that it can achieve ethical objectives without sacrificing efficiency. Our combined theoretical and numerical results offer a strong foundation for the practical use of RAR in real clinical trials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3