Synthesis of HHTPB by partial hydrogenation of HTPB using copper chromite as a catalyst

Author:

Prasad Ch Devi Vara1,Kanakaraju P.1,Vinu R.2,Deshpande Abhijit P.2

Affiliation:

1. Satish Dhawan Space Centre ISRO-524124 Sriharikota

2. Department of Chemical Engineering Indian Instituteof Technology Madras Chennai 600036 India

Abstract

AbstractHTPB (hydroxyl‐terminated polybutadiene) is a well‐established binder in the composite solid propellant owing to its excellent compatibility with ammonium perchlorate (AP) and aluminium (Al) particles in giving rise to optimal ballistic and mechanical properties. Efforts are being made to improve the ballistic properties further, such as specific impulse. One way of increasing the specific impulse is to hydrogenate HTPB, which decreases the molecular mass of the combustion product gases. This paper is a summary of efforts in synthesizing hydrogenated HTPB (HHTPB) using copper chromite (CC) as a catalyst. A novel synthesis methodology is developed for HHTPB using a temperature‐programmed batch reactor with a variable speed stirrer and an instrumentation system to maintain the desired liquid reactant temperature. A process cycle is developed that includes addition sequence and reaction time. The product is analyzed using 1H‐NMR and FTIR to estimate the degree of hydrogenation and the geometrical isomers respectively. The estimated apparent equilibrium rate constants from the degree of hydrogenation values are respectively 74 and 2034 L/(mol MPa) for non‐catalyzed and catalyzed systems, indicating the effectiveness of the catalyst. This is also substantiated by the reduction in Gibbs free energy (ΔG), to an extent of 4.48 kJ/mol. Thermogravimetry examination indicates that the decomposition temperature of HHTPB produced by the catalytic method is marginally higher compared to HTPB. DSC curves indicate that the decomposition enthalpy of HHTPB is higher than that of HTPB. In summary, this paper proposed and validated a novel method in the preparation of HHTPB using copper chromite.

Publisher

Wiley

Reference22 articles.

1. A. Tonson Highly hydrogenated functional terminated conjugated diene polymers US patent number: US005266653A 1993 1–6.

2. A. Misumi Production of hydrogenated polymer Japanese Patent JPS62151404A 1987 1–6.

3. A. Misumi Production of hydrogenated polymer Japanese Patent JPS62151405A 1987 1–7.

4. A. Misumi K. Okamoto Method for hydrogenating dienepolymer Japanese patent JPS62132902A 1987 1–7.

5. Hydrogenation of low-molar-mass, OH-telechelic polybutadienes. I. Methods based on diimide

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3