Combustion of 10–100 μm aluminum droplets in detonation products gases

Author:

Kuhl Allen L.1ORCID,Grote David P.1,Springer H. Keo1

Affiliation:

1. Lawrence Livermore National Laboratory Livermore, California 94550 United States

Abstract

AbstractWe describe a two‐phase model of combustion effects in aluminized high explosive (HE) charges. It is based on: (i) a Gas Dynamic Model of the expansion of the detonation product gases and their turbulent combustion with air; and (ii) a Heterogeneous Continuum Model of aluminum (Al) droplets and their combustion with the detonation product gases. Initial conditions are based on an analytical similarity solution for a cylindrical Chapman‐Jouguet (CJ) detonation propagating at the CJ detonation velocity. The CJ jump conditions are computed at the thermodynamic equilibrium state by the Cheetah code, assuming the Al droplets are inert. We assume that the Al is 10 % of the charge mass and occurs as droplets at the CJ state. Different initial droplet diameters, ranging from 10 to 100 microns, are studied. A hydrodynamic combustion model based on large Damköhler numbers is employed in this study, . It has a square‐root dependence on the Reynolds number (Re) and inversed‐squared dependence on the droplet diameter ( ). The burnout time ( ) of the Al droplets has a three‐halves dependence on the droplet diameter, . After burnout, the detonation products act as detonation products of the HE charge with active Al. They turbulently mix with air and form a combustion layer on the outer edge of the fireball. Details of the two‐phase model, initial conditions and evolution of the flow field will be described.

Publisher

Wiley

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3