The dual and emerging role of physical exercise‐induced TFEB activation in the protection against Alzheimer's disease

Author:

Morais Gustavo Paroschi1ORCID,de Sousa Neto Ivo Vieira2ORCID,Marafon Bruno Brieda1,Ropelle Eduardo R.3,Cintra Dennys E.34,Pauli José R.3,Silva Adelino S. R. da12ORCID

Affiliation:

1. Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School University of São Paulo (USP) Ribeirão Preto São Paulo Brazil

2. School of Physical Education and Sport of Ribeirão Preto University of São Paulo (USP) Ribeirão Preto São Paulo Brazil

3. Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences University of Campinas (UNICAMP) Limeira São Paulo Brazil

4. Nutrigenomics and Lipids Research Center CELN, School of Applied Sciences, UNICAMP São Paulo São Paulo Brazil

Abstract

AbstractThe mechanisms of autophagy have been related to Alzheimer's disease (AD) pathogenesis by the endosomal‐lysosomal system, having a critical function in forming amyloid‐β (Aβ) plaques. Nevertheless, the exact mechanisms mediating disease pathogenesis remain unclear. The transcription factor EB (TFEB), a primary transcriptional autophagy regulator, improves gene expression, mediating lysosome function, autophagic flux, and autophagosome biogenesis. In this review, we present for the first time the hypothesis of how TFEB, autophagy, and mitochondrial function are interconnected in AD, providing a logical foundation for unraveling the critical role of chronic physical exercise in this process. Aerobic exercise training promotes Adiponectin Receptor 1 (AdipoR1)/AMP‐activated protein kinase (AMPK)/TFEB axis activation in the brain of the AD animal model, which contributes to alleviated Aβ deposition and neuronal apoptosis while improving cognitive function. Moreover, TFEB upregulates Peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha (PGC‐1α) and nuclear factor erythroid 2‐related factor 2 (NRF‐2), improving mitochondrial biogenesis and redox status. In addition, tissue contraction activates calcineurin in skeletal muscle, which induces TFEB nuclear translocation, raising the hypothesis that the same would occur in the brain. Thus, a deep and comprehensive exploration of the TFEB could provide new directions and strategies for preventing AD. We conclude that chronic exercise can be an effective TFEB activator, inducing autophagy and mitochondrial biogenesis, representing a potential nonpharmacological strategy contributing to brain health.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Cell Biology,Clinical Biochemistry,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3