Engineered oncolytic bacteria for malignant solid tumor treatment

Author:

Wang Minjia1,Song Xuejiao1,Liu Xianglong2,Ma Chuan3,Ma Jing4,Shi Leilei5ORCID

Affiliation:

1. Department of Cardiology The Eighth Affiliated Hospital Sun Yat‐sen University Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases Shenzhen China

2. Department of Chemical and Biomolecular Engineering National University of Singapore Singapore Singapore

3. Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology Cheeloo College of Medicine Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China

4. Department of Pharmacy South China Hospital Medical School Shenzhen University Shenzhen China

5. Precision Research Center for Refractory Diseases in Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai China

Abstract

AbstractBacteria have been explored for their potential in fighting against cancer for decades. Due to their outstanding tumor‐targeting capacity and high biocompatibility, live bacteria can serve as microrobots delivering and producing anti‐tumor agents. In addition, live bacteria have intrinsic immune‐activating functions that aid in the generation of anti‐tumor immunity both systemically and locally in the tumor microenvironment. While bacteria‐based cancer therapy is still facing great challenges, progress in this platform combined with nanobiotechnologies has shown promise in terms of safety and effectiveness. Here, basic development strategies of bacteria‐based delivery systems armed with nanotechnologies, virulence attenuation, and genetic manipulation are summarized and the design of a spatiotemporal selectivity is particularly emphasized. In conclusion, the engineered bacteria platform has a high potentiality in the development of novel cancer therapeutics and holds prospects for future investigation and clinical use.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3