MiR‐503 pleiotropically regulates epithelial‐mesenchymal transition and targets PTK7 to control lung cancer metastasis

Author:

Tsai Tzu‐Hsiu1ORCID,Gow Chien‐Hung23ORCID,Liu Yi‐Nan1,Tsai Meng‐Feng4,Chang Tzu‐Hua1,Wu Shang‐Gin1ORCID,Hsieh Min‐Shu5,Su Kang‐Yi6,Shih Jin‐Yuan17

Affiliation:

1. Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan

2. Department of Internal Medicine Far Eastern Memorial Hospital New Taipei City Taiwan

3. Department of Healthcare Information and Management Ming‐Chuan University Taoyuan Taiwan

4. Department of Biomedical Sciences Da‐Yeh University Changhua Taiwan

5. Department of Pathology National Taiwan University Hospital Taipei Taiwan

6. Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine National Taiwan University Taipei Taiwan

7. Graduate Institute of Clinical Medicine College of Medicine National Taiwan University Taipei Taiwan

Abstract

AbstractObjectiveIn lung cancer patients, most deaths are caused by the distant dissemination of cancer cells. Epithelial–mesenchymal transition (EMT) and collective cell migration are distinct and important mechanisms involved in cancer invasion and metastasis. Additionally, microRNA dysregulation contributes significantly to cancer progression. In this study, we aimed to explore the function of miR‐503 in cancer metastasis.MethodsMolecular manipulations (silencing or overexpression) were performed to investigate the biological functions of miR‐503 including migration and invasion. Reorganization of cytoskeleton was assessed using immunofluorescence and the relationship between miR‐503 and downstream protein tyrosine kinase 7 (PTK7) was assessed using quantitative real‐time PCR, immunoblotting, and reporter assays. The tail vein metastatic animal experiments were performed.ResultsHerein, we demonstrated that the downregulation of miR‐503 confers an invasive phenotype in lung cancer cells and provided in vivo evidence that miR‐503 significantly inhibits metastasis. We found that miR‐503 inversely regulates EMT, identified PTK7 as a novel miR‐503 target, and showed the functional effects of miR‐503 on cell migration and invasion were restored upon reconstitution of PTK7 expression. As PTK7 is a Wnt/planar cell polarity protein crucial for collective cell movement, these results implicated miR‐503 in both EMT and collective migration. However, the expression of PTK7 did not influence EMT induction, suggesting that miR‐503 regulates EMT through mechanisms other than PTK7 inhibition. Furthermore, we discovered that PTK7 mechanistically activates focal adhesion kinase (FAK) and paxillin, thereby controlling the reorganization of the cortical actin cytoskeleton.ConclusionCollectively, miR‐503 is capable of governing EMT and PTK7/FAK signaling independently to control the invasion and dissemination of lung cancer cells, indicating that miR‐503 represents a pleiotropic regulator of cancer metastasis and hence a potential therapeutic target for lung cancer.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3