Advances in two‐dimensional molybdenum ditelluride (MoTe2): A comprehensive review of properties, preparation methods, and applications

Author:

Shinde Pratik V.1,Hussain Muzammil12,Moretti Elisa1,Vomiero Alberto13ORCID

Affiliation:

1. Department of Molecular Sciences and Nanosystems Ca’ Foscari University of Venice Venezia Italy

2. Department of Industrial Engineering University of Padova Padova Italy

3. Department of Engineering Sciences and Mathematics Luleå University of Technology Luleå Sweden

Abstract

AbstractIn the past decade, molybdenum ditelluride (MoTe2) has received significant attention from the scientific community due to its structural features and unique properties originate from them. In the current review, the properties, various preparation approaches, and versatile applications of MoTe2 are presented. The review provides a brief update on the state of our fundamental understanding of MoTe2 material and also discusses the issues that need to be resolved. To introduce MoTe2, we briefly summarize its structural, optoelectronic, magnetic, and mechanical properties in the beginning. Then, different preparation methods of MoTe2, such as exfoliation, laser treatment, deposition, hydrothermal, microwave, and molecular beam epitaxy, are included. The excellent electrical conductivity, strong optical activity, tunable bandgap, high sensitivity, and impressive stability make it an ideal contender for different applications, including energy storage, catalysis, sensors, solar cells, photodetectors, and transistors. The performance of MoTe2 in these applications is systematically introduced along with mechanistic insights. At the end of the article, the challenges and possible future directions are highlighted to further modify MoTe2 material for the numerous functionalities. Therefore, the availability of different phases and layer structures implies a potential for MoTe2 to lead an era of two‐dimensional materials that began from the exfoliation of graphene.

Funder

Kempe Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3