Investigation of the behavior of hydrogen‐bonded phenolic compounds and their determination by using poly(vinylferrocenium)–polyaniline composite film

Author:

Kavanoz Muammer1,Pekmez Nuran Özçiçek2,Can Muzaffer3

Affiliation:

1. Department of Chemistry Recep Tayyip Erdogan University 53100 Rize Turkey

2. Department of Chemistry Hacettepe University 06800 Beytepe/Ankara Turkey

3. Department of Chemistry Kırıkkale University 71450 Kırıkkale Turkey

Abstract

ABSTRACTThe hydrogen bonding between phenolic compounds (phenol (Ph), catechol (Ct), resorcinol (Rs), and hydroquinone (Hq)) is investigated at pH 4. The oxidation behaviors of total phenolic compounds (TotPh) are different from their individual behaviors due to the existence of intermolecular hydrogen‐bonded oligomeric clusters. Theoretical calculations and voltammetric and spectroscopic evidences support the intermolecular hydrogen bonding. The interaction of the phenolic compounds with polyaniline (PANI) and poly(vinylferrocenium) (PVF+) films are also investigated electrochemically and spectroscopically. The phenolic molecules are immobilized in both polymers due to the construction of hydrogen bonds by PANI and the complexation with PVF+. In addition, Ct and Hq are catalytically oxidized by PANI. Determinations of Ct and TotPh are performed on PVF+–PANI compositecoated Pt electrode using amperometric It method. Composite coating exhibits significant electrochemical activity toward Ct and TotPh, with high sensitivity and a wide linearity range. The steady‐state currents versus concentration of Ct and TotPh are found to be linear in the range of 1.35 × 10−3−50.0 mM and 4.10 × 10−4−560 mM for two linear regions, respectively. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43596.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3