Fecal microbiota transplants modulate the gut microbiome of a two‐toed sloth (Choloepus didactylus)

Author:

Thacher Piper R.12ORCID,Kendrick Erin L.3,Maslanka Michael3,Muletz‐Wolz Carly R.1ORCID,Bornbusch Sally L.13ORCID

Affiliation:

1. Center for Conservation Genomics Smithsonian's National Zoo and Conservation Biology Institute Washington District of Columbia USA

2. Department of Environmental Science and Policy, Smithsonian Mason School of Conservation George Mason University Fairfax Virginia USA

3. Department of Nutrition Science Smithsonian's National Zoo and Conservation Biology Institute Washington District of Columbia USA

Abstract

AbstractThe microbes inhabiting an animal's gastrointestinal tracts, collectively known as the gut microbiome, are vital to animal health and wellbeing. For animals experiencing gut distress or infection, modulation of the gut microbiome, for example, via fecal microbiota transplant (FMT), provides a possible disease prevention and treatment method. The beneficial microbes present in the donor's transplanted feces can help combat pathogens, assist in digestion, and rebalance the recipient's microbiota. Investigating the efficacy of FMTs in animal health is a crucial step toward improving management strategies for species under human care. We present a case study of the use of FMTs in a two‐toed sloth experiencing abnormally large, clumped, and frequent stools. We used 16 S rRNA amplicon sequencing of fecal samples to (a) compare the microbiomes of the FMT donor, a healthy, cohoused conspecific, and the FMT recipient and (b) assess the influence of multiple rounds of FMTs on the recipient's microbiome and stool consistency and frequency over time. In response to the FMTs, we found that the recipient's microbiome showed trends toward increased diversity, shifted community composition, and altered membership that more resembled the community of the donor. FMT treatment was also associated with marked, yet temporary, alleviation of the recipient's abnormal bowel movements, suggesting a broader impact on gut health. Our results provide valuable preliminary evidence that FMT treatments can augment the recipient's gut microbiome, with potential implications for animal health and management.

Publisher

Wiley

Subject

Animal Science and Zoology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3