Multi‐site Passivation of ZnO Metal Oxides via Biomolecules for Efficient and Highly Stable Organic Solar Cells

Author:

Ismail Irfan12,Khalil Maria23,Gao Xiaomei14,Chen Xingze14,Jawad Muhammad14,Huang Rong15,Li Zhiyun15,Tsiwah Emmanuel Acheampong14,Li Wei‐shi3,Luo Qun14,Ma Chang‐Qi14

Affiliation:

1. i‐Lab & Printable Electronics Research Center Suzhou Institute of Nano‐Tech and Nano‐Bionics (SINANO), Chinese Academy of Sciences (CAS) Suzhou Jiangsu 215123 China

2. University of Chinese Academy of Sciences (UCAS) Beijing 100040 China

3. Shanghai Institute of Organic Chemistry (SIOC) Chinese Academy of Sciences (CAS) Shanghai 200032 China

4. School of Nano‐Tech and Nano‐Bionics University of Science and Technology of China (USTC) Hefei Anhui 230027 China

5. Vacuum Interconnected Nanotech Workstation (Nano‐X) Suzhou Jiangsu 215123 China

Abstract

Comprehensive SummaryZnO nanoparticles (nps) among metal oxide (MOs) are proven to be essential electron transporting layers (ETLs) applied in organic solar cells (OSCs). However, intrinsic defects, interfacial charge recombination, and catalytic behavior towards the active layer restrict the applications of ZnO nps for efficient and long‐term stable OSCs. The commonly available biomolecule cytidine 5'‐monophosphate (CMP‐OH) with phosphonic acid, its salt cytidine 5'‐monophosphate disodium salt (CMP‐ONa) with a phosphate group as an anchoring group and conjugated terminal functional in both analogous molecules provide carrier transfer bridge at bottom interface of the active layer. Systematized theoretical investigations and characterizations have discovered the multi‐site coordination of CMP‐OH towards acceptor molecules and ZnO nps. The dual‐side alignment of CMP analogous molecules hinders interfacial charge recombination and enhances charge transfer potential at once. Inevitably, PM6:L8‐BO‐based OSCs with modified ETL obtain 18.13% efficiency, 12% higher than that of unmodified nps. Besides higher efficiency, CMP‐OH‐based OSC devices illustrate remarkably improved thermal stability for 500 h at 85 °C with 72% of initial PCE and operation stability for 2000 h with 90.1% of initial PCE. This work reveals the passivation mechanism of multi‐anchoring groups towards MOs and single‐functional groups towards the active layer to optimize the interface for efficient and highly stable OSCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3