Metal‐Decorated Porous Organic Polymers: Bridged the Gap between Organic and Inorganic Scaffolds

Author:

Gao Zhu1,Liu Yufei1,Wu Shaofei12,Tang Juntao1,Yuan Kuanyu3,Pan Chunyue1,Yu Guipeng1

Affiliation:

1. College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China

2. Department of Chemistry National University of Singapore 3 Science Drive 3, 117543 Singapore

3. School of Chemistry, Chemical Engineering and Materials Jining University Qufu Shandong 273100 China

Abstract

Comprehensive SummaryAdvanced functionalization‐decorated porous organic polymers (POPs) are emerging as a prominent research focus, spanning from their construction to applications in gas storage and separation, catalysis, energy storage, electrochemistry, and other areas. Furthermore, the inherent organic nature, tailored pore structures, and adjustable chemical components of POPs offer a versatile platform for the incorporation of various metal active sites. Meticulously designed molecular building blocks can serve as organic ligands uniformly distributed throughout POPs, leading to the effective isolation of inorganic metal active sites at the molecular level. In this manner, POPs containing active metal centers bridge the gap between organic and inorganic scaffolds. This review aims to provide an overview of recent research progress on metal‐decorated POPs, focusing on strategies for incorporating metal active sites into POPs and their applications in adsorption, separation, catalysis, and photoelectrochemistry. Finally, current challenges and future prospects are discussed for further research. Key ScientistsAdvanced functionalized porous organic polymers have become a new research hotspot, ranging from their construction to their use in gas storage and separation, catalysis, energy storage, electrochemistry, and other applications. In 2002, the McKeown group was the first to report phthalocyanine‐based MPOPs with permanent porosity and a moderate surface area. In 2010, the Yu group prepared nanoporous polyporphyrin materials P(Fe‐TTPP) from the metallated porphyrin with functionalized thiophenyl groups by the FeCl3 catalyzed oxidation couple reaction showing the surface area of 1522 m2·g–1. Subsequently, in 2013, the Deng group was the first to use metalated salens as the original building blocks for preparing MPOPs. The Morin group was the first to produce a series of ferrocene‐based nanoporous frameworks via radical polymerization, with surface areas ranging from 385 to 899 m2·g–1. In 2016, the Han group synthesized two N‐pyridinylphenylcarbazole (PPC) ligands to produce a series of metalized polycarbazole networks. Recently, the Tan group reported a solvent‐knitting hyper‐cross‐linking reaction to produce HUST‐1, which contains a porphyrin unit. The porphyrin moiety provides a centered square‐planar metal post‐coordination site, resulting in the metalated HUST‐1‐Co, which exhibits high efficiency in the catalytic conversion of CO2. Additionally, the Kegnæs group combined the decomposition of the palladium complex with an in situ catalyzed polymerization reaction, enabling the confinement of nascent Pd particles in the developing polymer network. This review focuses on recent research progress in metal‐decorated POPs, emphasizing strategies for incorporating metal active sites into POPs and their applications.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3