How aluminium additions improve the performance of zinc‐rich organic coatings

Author:

Al‐Nafai Isehaq12ORCID,Rzeszutek Katarzyna1,Lyon Stuart1ORCID,Jones Christopher3,Beaumont Douglas3

Affiliation:

1. Department of Materials The University of Manchester Manchester UK

2. Department of Chemistry Sultan Qaboos University Sultanate of Oman

3. AkzoNobel Gateshead UK

Abstract

AbstractNovel sacrificial zinc‐rich organic coatings, with varying additions of aluminium, were prepared and tested for anticorrosion performance. Electrochemical measurements (potential vs. time and electrochemical impedance spectroscopy) were carried out to investigate cathodic protection and barrier performance while neutral salt spray and immersion experiments tested long‐term performance. Analytical scanning electron microscopy and X‐ray diffraction were used to characterize coatings before and after testing. Formulations containing aluminium significantly outperformed the standard 100% zinc‐rich coating with the greatest improvement occurring at 10%–15% aluminium by volume in the dry film. This improvement was caused by the dispersal of aluminium between zinc particles, which improved packing and enabled greater efficiency in zinc consumption resulting in extended galvanic protection times for steel substrates. The expected zinc corrosion product (basic zinc chloride, simonkolleite) was present within the coating as well as a Zn–Al layered doubled hydroxide. The latter's presence demonstrates that dissolution of aluminium contributed to the longevity of the galvanic action. The new Zn–Al formulations are extremely promising alternatives to standard zinc‐rich epoxy coatings, significantly reducing zinc loading and increasing the sacrificial lifetime.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3