Tcf12, A Member of Basic Helix-Loop-Helix Transcription Factors, Mediates Bone Marrow Mesenchymal Stem Cell Osteogenic Differentiation In Vitro and In Vivo

Author:

Yi Siqi12,Yu Miao1,Yang Shuang1,Miron Richard J.134,Zhang Yufeng12

Affiliation:

1. a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China

2. b Medical Research Institute, Wuhan University, Wuhan, People's Republic of China

3. c Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA

4. d Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland

Abstract

Abstract Several basic Helix-Loop-Helix transcription factors have recently been identified to regulate mesenchymal stem cell (MSC) differentiation. In the present study, Tcf12 was investigated for its involvement in the osteoblastic cell commitment of MSCs. Tcf12 was found highly expressed in undifferentiated MSCs whereas its expression decreased following osteogenic culture differentiation. Interestingly, Tcf12 endogenous silencing using shRNA lentivirus significantly promoted the differentiation ability of MSCs evaluated by alkaline phosphatase staining, alizarin red staining and expression of osteoblast-specific markers by real-time PCR. Conversely, overexpression of Tcf12 in MSCs suppressed osteoblast differentiation. It was further found that silencing of Tcf12 activated bone morphogenetic protein (BMP) signaling and extracellular signal-regulated kinase (Erk)1/2 signaling pathway activity and upregulated the expression of phospho-SMAD1 and phospho-Erk1/2. A BMP inhibitor (LDN-193189) and Erk1/2 signaling pathway inhibitor (U0126) reduced these findings in the Tcf12 silencing group. Following these in vitro results, a poly-L-lactic acid/Hydroxyappatite scaffold carrying Tcf12 silencing lentivirus was utilized to investigate the repair of bone defects in vivo. The use of Tcf12 silencing lentivirus significantly promoted new bone formation in 3-mm mouse calvarial defects as assessed by micro-CT and histological examination whereas overexpression of Tcf12 inhibited new bone formation. Collectively, these data indicate that Tcf12 is a transcription factor highly expressed in the nuclei of stem cells and its downregulation plays an essential role in osteoblast differentiation partially via BMP and Erk1/2 signaling pathways.

Funder

the funds of the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Reference54 articles.

1. Genetic control of bone formation;Karsenty;Annu Rev Cell Dev Biol,2009

2. Osteoclasts: What do they do and how do they do it?;Teitelbaum;Am J Pathol,2007

3. Approaches to the targeting of treatment for osteoporosis;Kanis;Nat Rev Rheumatol,2009

4. Osteoporosis: Impact on health and economics;Harvey;Nat Rev Rheumatol,2010

5. Osteoporosis: Now and the future;Rachner;Lancet,2011

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3