Event‐triggered differential private distributed fusion estimation for sensor networks with unknown cross‐correlations

Author:

Liang Yuan1,Sun Huiyu1,Li Yinya2ORCID,Chen Ye3ORCID,Cong Jinliang4

Affiliation:

1. School of Automotive and Rail Transit Nanjing Institute of Technology Nanjing Jiangsu China

2. School of Automation Nanjing University of Science and Technology Nanjing Jiangsu China

3. Institute of Artificial Intelligence Nanjing Institute of Technology Nanjing Jiangsu China

4. School of Electrical Engineering and Automation Changshu Institute of Technology Changshu Jiangsu China

Abstract

AbstractRecently, preserving privacy and reducing energy consumption become important concerns of sensor networks. However, existing privacy‐preserving estimation methods cause many needless data transmissions, which results in energy waste. Besides, these methods generates fusion estimates with heavy computational burdens, due to needing calculating cross‐covariance matrices of each pair of local estimation errors. Worse still, these cross‐covariances are often unavailable in actual sensor networks. In view of these problems, a novel framework of event‐triggered (ET) differential private distributed fusion estimation is proposed. Within this framework, an ET mechanism is designed to schedule transmissions of local estimates for reducing communication consumptions. Then, with using local perturbation mechanism, conditions for achieving differential privacy and dealing with eavesdroppers which can eavesdrop and fuse local estimates are provided. Based on covariance intersection fusion rule, an ET differential private fusion method is developed, which can guarantee fusion results uniformly stable in spite of completely unknown cross‐covariances. Finally, simulation results verify that the proposed method can preserve privacy and reduce communication consumptions without using cross‐covariances, at the cost of only slight decline of estimation performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Privacy-Preserving State Estimation in the Presence of Eavesdroppers: A Survey;IEEE Transactions on Automation Science and Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3