Comparison of advanced methodologies for diatom identification within dynamic coastal communities

Author:

Pierce Emily12ORCID,Torano Olivia1,Lin YuanYu1ORCID,Schnetzer Astrid2,Marchetti Adrian1ORCID

Affiliation:

1. Department of Earth, Marine and Environmental Sciences University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

2. Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh North Carolina USA

Abstract

AbstractDiatom community composition has a critical influence on global ocean health and ecological processes. Developing accurate and efficient methods for diatom identification under dynamic environmental conditions is essential to understanding the implications of diatom community changes. Two developing methods for identifying and enumerating phytoplankton, cell imaging and molecular sequencing, are experiencing rapid advancements. This study aims to compare diatom taxonomic composition results within natural assemblages derived from rapidly advancing methods, FlowCam imaging and metabarcoding of the V4 region of the 18S rRNA gene, with traditional light microscopy cell counting techniques. All three methods were implemented in tandem to analyze changes in dynamic diatom assemblages within simulated upwelling experiments conducted in the California upwelling zone. The results of this study indicate that, summed across all samples, DNA sequencing detected four times as many genera as morphology‐based methods, thus supporting previous findings that DNA sequencing is the most powerful method for analyzing species richness. Results indicate that all three methods returned comparable relative abundance for the most abundant genera. However, the three methods did not return comparable absolute abundance, primarily due to barriers in deriving quantities in equal units. Overall, this study indicates that at the semi‐quantitative level of relative abundance measurements, FlowCam imaging and metabarcoding of the V4 region of the 18S rRNA gene yield comparable results with light microscopy but at the qualitative and quantitative levels, enumeration metrics diverge, and thus method selection and cross‐method comparison should be performed with caution.

Funder

National Science Foundation

Publisher

Wiley

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3