Viral AMGs‐driven pentose phosphate pathway in natural wetland

Author:

Li Yanmei1,Yu Hang1,Xiong Lingling1,Wei Yunlin1,Li Haiyan2,Ji Xiuling2ORCID

Affiliation:

1. Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China

2. Yunnan International Joint Laboratory of Research and Development of Crop Safety Production on Heavy Metal Pollution Areas, Medical School Kunming University of Science and Technology Kunming China

Abstract

AbstractViruses exist anywhere on earth where there is life, and among them, virus‐encoded auxiliary metabolic genes (AMGs) can maintain ecosystem balance and play a major role in the global ecosystem. Although the function of AMGs has been widely reported, the genetic diversity of AMGs in natural ecosystems is still poorly understood. Exploring the genetic diversity of viral community‐wide AMGs is essential to gain insight into the complex interactions between viruses and hosts. In this article, we studied the phylogenetic tree, principal co‐ordinates analysis (PCoA), α diversity, and metabolic pathways of viral auxiliary metabolism genes involved in the pentose phosphate pathway (PPP) through metagenomics, and the changes of metabolites and genes of host bacteria were further studied by using Pseudomonas mandelii SW‐3 and its lytic phage based on metabolic flow and AMGs expression. We found that the viral AMGs in the Napahai plateau wetland were created by a combination of various external forces, which contributed to the rich genetic diversity, uniqueness, and differences of the virus, which promoted the reproduction of offspring and better adaptation to the environment. Overall, this study systematically describes the genetic diversity of AMGs associated with the PPP in plateau wetland ecosystems and further expands the understanding of phage–host unique interactions.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3