Porous poly(bismaleimide‐co‐divinylbenzene) microspheres as dispersive solid‐phase extraction adsorbent coupled to high‐performance liquid chromatography for the determination of triazine herbicide residues in vegetable samples

Author:

Xu Yang1,Bao Jingyi1,Ning Yuhan1,Wang Weiping2ORCID,Wang Ai‐jun3,Feng Jiu‐ju1

Affiliation:

1. College of Chemistry and Materials Science Zhejiang Normal University Jinhua China

2. College of Pharmaceutical Engineering and Biotechnology College of Cosmetics Zhejiang Pharmaceutical University Ningbo China

3. College of Geography and Environmental Sciences Zhejiang Normal University Jinhua China

Abstract

In this work, monodisperse and nano‐porous poly(bismaleimide‐co‐divinylbenzene) microspheres with large specific surface area (427.6 m2/g) and rich pore structure were prepared by one‐pot self‐stable precipitation polymerization of 2,2′‐bis[4‐(4‐maleimidophenoxy) phenyl] propane and divinylbenzene. The prepared poly(bismaleimide‐co‐divinylbenzene) microspheres were employed as dispersive solid‐phase extraction (DSPE) adsorbent for the extraction of triazine herbicides. Under optimized conditions, good linearities were obtained between the peak area and the concentration of triazine herbicides in the range of 1–400 µg/L (R2 ≥ 0.9987) with the limits of detection of 0.12–0.31 µg/L. Triazine herbicides were detected using the described approach in vegetable samples (i.e., cucumber, tomato, and maize) with recoveries of 93.6%–117.3% and relative standard deviations of 0.4%–3.5%. In addition, the recoveries of triazine herbicides remained above 80.7% after being used for nine DSPE cycles, showing excellent reusability of poly(bismaleimide‐co‐divinylbenzene) microspheres. The adsorption of poly(bismaleimide‐co‐divinylbenzene) microspheres toward triazine herbicides was a monolayer and chemical adsorption. The adsorption mechanism between triazine herbicides and adsorbents might be a combination of hydrogen bonding, electrostatic interaction, and π‐π conjugation. The results confirmed the potential use of the poly(bismaleimide‐co‐divinylbenzene) microspheres‐based DSPE coupled to the high‐performance liquid chromatography method for the detection of triazine herbicide residues in vegetable samples.

Funder

Jinhua Science and Technology Bureau

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3