Acrylonitrile butadiene rubber‐based heat shielding materials for solid rocket motors: Impact of metal–organic frameworks on thermal and mechanical properties

Author:

Elashker Ahmed Elsayed Mohamed Monir1ORCID,Zorainy Mahmoud Yosry1ORCID,Zaghloul Basem1,Eldakhakhny Ahmed Mahmoud1,Kotb Mohamed Mokhtar1

Affiliation:

1. Chemical Engineering Department Military Technical College (MTC) Cairo Egypt

Abstract

AbstractThe thermal protection system (TPS) plays a major role in shielding solid rocket motors (SRMs) against structural failure from excessive heating. This study was directed at the recent innovation in flame‐retardant materials used for thermal insulation, with a particular focus on integrating metal–organic frameworks (MOFs) to bolster thermal stability. Three targeted transition metal‐BDC MOFs (MIL‐88(Fe), MOF‐71(Co), and MOF‐5(Zn)) were hydrothermally synthesized and the effect of incorporating these MOFs into nitrile butadiene rubber (NBR) composites was tracked. In general, the addition of the MOFs improved the interfacial compatibility and the processing of the composites. Additionally, experimental investigations have shown that all MOFs improved the mechanical properties of the NBR composite materials. Specifically, the addition of MOF‐5 has been found to increase the maximum tensile strength to 13 MPa, while MIL‐88 increased the elongation at break to 67.1%. In order to evaluate the thermal stability and ablative resistance of the prepared composites, the oxy‐acetylene flame test was utilized. Results showed that the efficiency of the composite as thermal insulation is highly dependent on the MOF type and the metal included. The impact of MOF‐71(Co) on thermal insulation displayed the least linear and mass ablation rates (0.0168 mm/s and 0.057 g/s, respectively) along with the lowest recorded back‐face temperatures, owing to the formation of a thick and compact char layer upon exposure to flames.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3