Nanoparticle‐based nanocomposite coatings with postprocessing for enhanced antimicrobial capacity of polymeric film

Author:

Shin Jaemyung1,Jeong Robin2ORCID,Kumar Hitendra23,Park Chaneel2,Park Simon S.2,Kim Keekyoung12ORCID

Affiliation:

1. Department of Biomedical Engineering Schulich School of Engineering, University of Calgary Calgary Alberta Canada

2. Department of Mechanical and Manufacturing Engineering Schulich School of Engineering, University of Calgary Calgary Alberta Canada

3. Department of Pathology and Laboratory Medicine Cumming School of Medicine, University of Calgary Calgary Alberta Canada

Abstract

AbstractBacterial adhesion and biofilm formation on surfaces pose a significant risk of microbial contamination and chronic diseases, leading to potential health complications. To mitigate this concern, the implementation of antibacterial coatings becomes paramount in reducing pathogen propagation on contaminated surfaces. To address this requirement, our study focuses on developing cost‐effective and sustainable methods using polymer composite coatings. Copper and titanium dioxide nanoparticles were used to assess their active antimicrobial functions. After coating the surface with nanoparticles, four different combinations of two postprocessing treatments were performed. Intense pulsed light was utilized to sinter the coatings further, and plasma etching was applied to manipulate the physical properties of the nanocomposite‐coated sheet surface. Bacterial viability was comparatively analyzed at four different time points (0, 30, 60, and 120 min) upon contact with the nanocomposite coatings. The samples with nanoparticle coatings and postprocessing treatments showed an above‐average 84.82% mortality rate at 30 min and an average of 89.77% mortality rate at 120 min of contact. In contrast, the control sample, without nanoparticle coatings and postprocessing treatments, showed a 95% microbe viability after 120 min of contact. Through this study, we gained critical insights into effective strategies for preventing the spread of microorganisms on high‐touch surfaces, thereby contributing to the advancement of sustainable antimicrobial coatings.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3