Twins‐like nanodrugs synchronously transport in blood and coalesce inside tumors for sensitive ultrasound imaging and triggerable penetrative drug delivery

Author:

Cai Yujun12,Chen Gengjia13,Lin Minzhao1,Li Bo2,Zhong Huihai1,Li Tan1,Xiao Zecong2,Wang Yong4,Shuai Xintao12ORCID

Affiliation:

1. PCFM Lab of Ministry of Education School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China

2. Nanomedicine Research Center the Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China

3. Department of Radiology The Sixth Affiliated Hospital Sun Yat‐sen University Guangzhou China

4. College of Chemistry and Materials Science Jinan University Guangzhou China

Abstract

AbstractNanodrugs capable of aggregating in the tumor microenvironment (TME) have demonstrated great efficiency in improving the therapeutic outcome. Among various approaches, the strategy utilizing electrostatic interaction as a driving force to achieve intratumor aggregation of nanodrugs has attracted great attention. However, the great difference between the two nanodrugs with varied physicochemical properties makes their synchronous transport in blood circulation and equal‐opportunity tumor uptake impossible, which significantly detracts from the beneficial effects of nanodrug aggregation inside tumors. We herein propose a new strategy to construct a pair of extremely similar nanodrugs, referred to as “twins‐like nanodrugs (TLNs)”, which have identical physicochemical properties including the same morphology, size, and electroneutrality to render them the same blood circulation time and tumor entrance. The 1:1 mixture of TLNs (TLNs‐Mix) intravenously injected into a mouse model efficiently accumulates in tumor sites and then transfers to oppositely charged nanodrugs for electrostatic interaction‐driven coalescence via responding to matrix metalloproteinase‐2 (MMP‐2) enriched in tumor. In addition to enhanced tumor retention, the thus‐formed micron‐sized aggregates show high echo intensity essential for ultrasound imaging as well as ultrasound‐triggered penetrative drug delivery. Owing to their distinctive features, the TLNs‐Mix carrying sonosensitizer, immune adjuvant, and ultrasound contrast agent exert potent sonodynamic immunotherapy against hypovascular hepatoma, demonstrating their great potential in treating solid malignancies.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine,General Chemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3