Nitrogen‐doped Carbon–CoOx Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0 W cm−2 Peak Power and 100 h Life in Anion‐Exchange Membrane Fuel Cells

Author:

Peng Xiong1ORCID,Omasta Travis J.12ORCID,Magliocca Emanuele1,Wang Lianqin3ORCID,Varcoe John R.3ORCID,Mustain William E.1ORCID

Affiliation:

1. Department of Chemical Engineering University of South Carolina Columbia SC USA

2. Department of Chemical and Biomolecular Engineering University of Connecticut Storrs CT USA

3. Department of Chemistry University of Surrey Guildford Surrey UK

Abstract

AbstractEfficient and durable nonprecious metal electrocatalysts for the oxygen reduction (ORR) are highly desirable for several electrochemical devices, including anion exchange membrane fuel cells (AEMFCs). Here, a 2D planar electrocatalyst with CoOx embedded in nitrogen‐doped graphitic carbon (N‐C‐CoOx) was created through the direct pyrolysis of a metal–organic complex with a NaCl template. The N‐C‐CoOx catalyst showed high ORR activity, indicated by excellent half‐wave (0.84 V vs. RHE) and onset (1.01 V vs. RHE) potentials. This high intrinsic activity was also observed in operating AEMFCs where the kinetic current was 100 mA cm−2 at 0.85 V. When paired with a radiation‐grafted ETFE powder ionomer, the N‐C‐CoOx AEMFC cathode was able to achieve extremely high peak power density (1.05 W cm−2) and mass transport limited current (3 A cm−2) for a precious metal free electrode. The N‐C‐CoOx cathode also showed good stability over 100 hours of operation with a voltage decay of only 15 % at 600 mA cm−2 under H2/air (CO2‐free) reacting gas feeds. The N‐C‐CoOx cathode catalyst was also paired with a very low loading PtRu/C anode catalyst, to create AEMFCs with a total PGM loading of only 0.10 mgPt‐Ru cm−2 capable of achieving 7.4 W mg−1PGM as well as supporting a current of 0.7 A cm−2 at 0.6 V with H2/air (CO2 free)—creating a cell that was able to meet the 2019 U.S. Department of Energy initial performance target of 0.6 V at 0.6 A cm−2 under H2/air with a PGM loading <0.125 mg cm−2 with AEMFCs for the first time.

Funder

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3