Analytical solution of two non‐identical edge cracks in an infinite strip under anti‐plane shear wave

Author:

Panja Sourav Kumar1ORCID,Alam Samim1ORCID,Mandal Subhas Chandra1

Affiliation:

1. Department of Mathematics Jadavpur University Kolkata West Bengal India

Abstract

AbstractThis article presents an extensive analytical solution addressing the interaction between two non‐identical edge cracks in an infinite orthotropic strip under anti‐plane shear waves. Most studies assume identical cracks or single edge crack in a strip, but this research breaks new ground by considering cracks of different sizes. By incorporating mixed‐type boundary conditions, the study derives dual integral equations. These equations are then transformed into a singular integral equation of Cauchy type with the aid of a trial solution and contour integration technique. The singular integral equation is further converted into a system of integral equations, which are solved numerically utilizing Jacobi polynomials. The obtained solutions are utilized to derive expressions for the stress intensity factor (SIF) and crack opening displacement (COD) at the crack tip using Krenk's interpolation formulae. The derived results are presented graphically and compared against existing solutions for single edge crack and symmetric edge cracks in static scenario.

Funder

Council of Scientific and Industrial Research, India

University Grants Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3