Investigating the effect of climate factors on fig production efficiency with machine learning approach

Author:

Sahın Demırel Ayca Nur1ORCID

Affiliation:

1. Faculty of Agriculture, Department of Agricultural Economics Iğdır University Iğdır Turkey

Abstract

AbstractBACKGROUNDThis study employs a machine learning approach to investigate the impact of climate change on fig production in Turkey. The eXtreme Gradient Boosting (XGBoost) algorithm is used to analyze production performance and climate variable data from 1988 to 2023. Fig production is a significant component of Turkey's agricultural economy. Therefore, understanding how climate change affects fig production is essential for the development of sustainable agricultural practices.RESULTSDespite an observed increase in fig production between 2005 and 2020, potential yield may be negatively impacted by climate variables. Identifying the specific climatic factors affecting fig production efficiency remains a challenge. In the study, two different machine learning models are created: one for fig production yield per decare and another for fig production yield per bearing fig sapling. Eight climate variables (16 variables considering day and night values) serve as independent variables in the models. The models reveal that temperature change has the highest impact, with a percentage contribution of 41.30% in the first model and 43.90% in the second model. Thermal radiation (day and night) and 2 m temperature also significantly affect individually fig production. Wind speed, precipitation and humidity contribute to a lesser extent.CONCLUSIONThis study illuminates the intricate interrelationship between climate change and fig production in Turkey. The utilization of machine learning as a predictive tool for future production trends and an instrument for informing agricultural practices is a valuable contribution to the field. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3