Multimodal Neuroimaging Fusion for Alzheimer's Disease: An Image Colorization Approach With Mobile Vision Transformer

Author:

Odusami Modupe1,Damasevicius Robertas2ORCID,Milieskaite‐Belousoviene Egle3,Maskeliunas Rytis1

Affiliation:

1. Centre of Real Time Computer Systems Kaunas University of Technology Kaunas Lithuania

2. Faculty of Applied Mathematics Silesian University of Technology Gliwice Poland

3. Department of Intensive Care Lithuanian University of Health Sciences Kaunas Lithuania

Abstract

ABSTRACTMultimodal neuroimaging, combining data from different sources, has shown promise in the classification of the Alzheimer's disease (AD) stage. Existing multimodal neuroimaging fusion methods exhibit certain limitations, which require advancements to enhance their objective performance, sensitivity, and specificity for AD classification. This study uses the use of a Pareto‐optimal cosine color map to enhance classification performance and visual clarity of fused images. A mobile vision transformer (ViT) model, incorporating the swish activation function, is introduced for effective feature extraction and classification. Fused images from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Whole Brain Atlas (AANLIB), and Open Access Series of Imaging Studies (OASIS) datasets, obtained through optimized transposed convolution, are utilized for model training, while evaluation is achieved using images that have not been fused from the same databases. The proposed model demonstrates high accuracy in AD classification across different datasets, achieving 98.76% accuracy for Early Mild Cognitive Impairment (EMCI) versus LMCI, 98.65% for Late Mild Cognitive Impairment (LMCI) versus AD, 98.60% for EMCI versus AD, and 99.25% for AD versus Cognitive Normal (CN) in the ADNI dataset. Similarly, on OASIS and AANLIB, the precision of the AD versus CN classification is 99.50% and 96.00%, respectively. Evaluation metrics showcase the model's precision, recall, and F1 score for various binary classifications, emphasizing its robust performance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3