On electrostatic interactions of adenosine triphosphate–insulin‐degrading enzyme revealed by quantum mechanics/molecular mechanics and molecular dynamics

Author:

Somin Sarawoot12,Kulasiri Don12ORCID,Samarasinghe Sandhya1

Affiliation:

1. Centre for Advanced Computational Solutions (C‐fACS) Lincoln University Christchurch New Zealand

2. Department of Molecular Biosciences Lincoln University Christchurch New Zealand

Abstract

AbstractThe insulin‐degrading enzyme (IDE) plays a significant role in the degradation of the amyloid beta (Aβ), a peptide found in the brain regions of the patients with early Alzheimer’s disease. Adenosine triphosphate (ATP) allosterically regulates the Aβ‐degrading activity of IDE. The present study investigates the electrostatic interactions between ATP‐IDE at the allosteric site of IDE, including thermostabilities/flexibilities of IDE residues, which have not yet been explored systematically. This study applies the quantum mechanics/molecular mechanics (QM/MM) to the proposed computational model for exploring electrostatic interactions between ATP and IDE. Molecular dynamic (MD) simulations are performed at different temperatures for identifying flexible and thermostable residues of IDE. The proposed computational model predicts QM/MM energy‐minimised structures providing the IDE residues (Lys530 and Asp385) with high binding affinities. Considering root mean square fluctuation values during the MD simulations at 300.00 K including heat‐shock temperatures (321.15 K and 315.15 K) indicates that Lys530 and Asp385 are also the thermostable residues of IDE, whereas Ser576 and Lys858 have high flexibilities with compromised thermostabilities. The present study sheds light on the phenomenon of biological recognition and interactions at the ATP‐binding domain, which may have important implications for pharmacological drug design. The proposed computational model may facilitate the development of allosteric IDE activators/inhibitors, which mimic ATP interactions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3