Decoding cognitive health using machine learning: A comprehensive evaluation for diagnosis of significant memory concern

Author:

Sajid M.1ORCID,Sharma R.1,Beheshti I.23,Tanveer M.1ORCID,

Affiliation:

1. Department of Mathematics Indian Institute of Technology Indore Indore India

2. Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada

3. Neuroscience Research Program, Kleysen Institute for Advanced Medicine Health Sciences Centre Winnipeg Manitoba Canada

Abstract

AbstractThe timely identification of significant memory concern (SMC) is crucial for proactive cognitive health management, especially in an aging population. Detecting SMC early enables timely intervention and personalized care, potentially slowing cognitive disorder progression. This study presents a state‐of‐the‐art review followed by a comprehensive evaluation of machine learning models within the randomized neural networks (RNNs) and hyperplane‐based classifiers (HbCs) family to investigate SMC diagnosis thoroughly. Utilizing the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI2) dataset, 111 individuals with SMC and 111 healthy older adults are analyzed based on T1W magnetic resonance imaging (MRI) scans, extracting rich features. This analysis is based on baseline structural MRI (sMRI) scans, extracting rich features from gray matter (GM), white matter (WM), Jacobian determinant (JD), and cortical thickness (CT) measurements. In RNNs, deep random vector functional link (dRVFL) and ensemble dRVFL (edRVFL) emerge as the best classifiers in terms of performance metrics in the identification of SMC. In HbCs, Kernelized pinball general twin support vector machine (Pin‐GTSVM‐K) excels in CT and WM features, whereas Linear Pin‐GTSVM (Pin‐GTSVM‐L) and Linear intuitionistic fuzzy TSVM (IFTSVM‐L) performs well in the JD and GM features sets, respectively. This comprehensive evaluation emphasizes the critical role of feature selection, feature  based‐interpretability and model choice in attaining an effective classifier for SMC diagnosis. The inclusion of statistical analyses further reinforces the credibility of the results, affirming the rigor of this analysis. The performance measures exhibit the suitability of this framework in aiding researchers with the automated and accurate assessment of SMC. The source codes of the algorithms and datasets used in this study are available at https://github.com/mtanveer1/SMC.This article is categorized under: Technologies > Classification Technologies > Machine Learning Application Areas > Health Care

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Council of Scientific and Industrial Research, India

Science and Engineering Research Board

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3