Coculture techniques for modeling retinal development and disease, and enabling regenerative medicine

Author:

Ghareeb Ali E.12,Lako Majlinda2,Steel David H.12

Affiliation:

1. Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK

2. Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK

Abstract

Abstract Stem cell-derived retinal organoids offer the opportunity to cure retinal degeneration of wide-ranging etiology either through the study of in vitro models or the generation of tissue for transplantation. However, despite much work in animals and several human pilot studies, satisfactory therapies have not been developed. Two major challenges for retinal regenerative medicine are (a) physical cell-cell interactions, which are critical to graft function, are not formed and (b) the host environment does not provide suitable queues for development. Several strategies offer to improve the delivery, integration, maturation, and functionality of cell transplantation. These include minimally invasive delivery, biocompatible material vehicles, retinal cell sheets, and optogenetics. Optimizing several variables in animal models is practically difficult, limited by anatomical and disease pathology which is often different to humans, and faces regulatory and ethical challenges. High-throughput methods are needed to experimentally optimize these variables. Retinal organoids will be important to the success of these models. In their current state, they do not incorporate a representative retinal pigment epithelium (RPE)-photoreceptor interface nor vascular elements, which influence the neural retina phenotype directly and are known to be dysfunctional in common retinal diseases such as age-related macular degeneration. Advanced coculture techniques, which emulate the RPE-photoreceptor and RPE-Bruch’s-choriocapillaris interactions, can incorporate disease-specific, human retinal organoids and overcome these drawbacks. Herein, we review retinal coculture models of the neural retina, RPE, and choriocapillaris. We delineate the scientific need for such systems in the study of retinal organogenesis, disease modeling, and the optimization of regenerative cell therapies for retinal degeneration. Significance statement The light-sensitive neural retina is nourished by the retinal pigment epithelium (RPE), while the choriocapillaris, a dense capillary network, supplies oxygen and metabolites. Coculture of these tissues is therefore required to understand normal retinal development and disease. Transplanted retinal precursors fail to fully integrate within host tissues and form the normal RPE-photoreceptor and RPE-choriocapillaris interactions which sustain vision. Coculture techniques will enable in vitro optimization of regenerative cell therapies for degenerative retinal diseases, forming a step to successful in vivo transplant experiments. Furthermore, coculture of neural retina, RPE, and choriocapillaris will facilitate the development of transplantable multitissue sheets.

Funder

Fight for Sight

Medical Research Council

Biotechnology and Biological Sciences Research Council

European Research Council

Retina UK

Macular Society

Medical Research Council Canada

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3