Isolation and functional analysis of phage‐displayed antibody fragments targeting the staphylococcal superantigen‐like proteins

Author:

Alanko Ida1ORCID,Sandberg Rebecca1,Brockmann Eeva‐Christine2,de Haas Carla J. C.3,van Strijp Jos A. G.3,Lamminmäki Urpo2,Salo‐Ahen Outi M. H.1

Affiliation:

1. Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) Turku Åbo Akademi University Turku Finland

2. Department of Life Technologies University of Turku Turku Finland

3. Department of Medical Microbiology, University Medical Center Utrecht Utrecht University Utrecht The Netherlands

Abstract

AbstractStaphylococcus aureus produces numerous virulence factors that manipulate the immune system, helping the bacteria avoid phagocytosis. In this study, we are investigating three immune evasion molecules called the staphylococcal superantigen‐like proteins 1, 5, and 10 (SSL1, SSL5, and SSL10). All three SSLs inhibit vital host immune processes and contribute to S. aureus immune evasion. This study aimed to identify single‐chain variable fragment (scFvs) antibodies from synthetic antibody phage libraries, which can recognize either of the three SSLs and could block the interaction between the SSLs and their respective human targets. The antibodies were isolated after three rounds of panning against SSL1, SSL5, and SSL10, and their ability to bind to the SSLs was studied using a time‐resolved fluorescence‐based immunoassay. We successfully obtained altogether 44 unique clones displaying binding activity to either SSL1, SSL5, or SSL10. The capability of the SSL‐recognizing scFvs to inhibit the SSLs' function was tested in an MMP9 enzymatic activity assay, a P‐selectin glycoprotein ligand 1 competitive binding assay, and an IgG1‐mediated phagocytosis assay. We could show that one scFv was able to inhibit SSL1 and maintain MMP9 activity in a concentration‐dependent manner. Finally, the structure of this inhibiting scFv was modeled and used to create putative scFv‐SSL1‐complex models by protein–protein docking. The complex models were subjected to a 100‐ns molecular dynamics simulation to assess the possible binding mode of the antibody.

Publisher

Wiley

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3