Are fecal samples an appropriate proxy for amphibian intestinal microbiota?

Author:

Lam Ivan P. Y.12ORCID,Fong Jonathan J.2ORCID

Affiliation:

1. School of Biological Science The University of Hong Kong Hong Kong China

2. Science Unit Lingnan University Hong Kong China

Abstract

AbstractThe intestinal microbiota, an invisible organ supporting a host's survival, has essential roles in metabolism, immunity, growth, and development. Since intestinal microbiota influences a host's biology, application of such data to wildlife conservation has gained interest. There are standard protocols for studying the human intestinal microbiota, but no equivalent for wildlife. A major challenge is sampling the intestinal microbiota in an effective, unbiased way. Fecal samples are a popular proxy for intestinal microbiota because collection is non‐invasive and allows for longitudinal sampling. Yet it is unclear whether the fecal microbiota is representative of the intestinal microbiota. In wildlife studies, research on the sampling methodology is limited. In this study focusing on amphibians, we characterize and compare the microbiota (small intestine, large intestine, and feces) of two Hong Kong stream‐dwelling frog species: Lesser Spiny Frog (Quasipaa exilispinosa) and Hong Kong Cascade Frog (Amolops hongkongensis). We found that the microbiota of both species are similar at the level of phylum and family, but diverge at the level of genus. When we assessed the performance of fecal microbiota in representing the intestinal microbiota in these two species, we found that (1) the microbiota of the small and large intestine differs significantly, (2) feces are not an appropriate proxy of either intestinal sections, and (3) a set of microbial taxa significantly differs between sample types. Our findings raise caution equating fecal and intestinal microbiota in stream‐dwelling frogs. Sampling feces can avoid sacrifice of an animal, but researchers should avoid over‐extrapolation and interpret results carefully.

Funder

Lingnan University

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Reference100 articles.

1. Variation in koala microbiomes within and between individuals: effect of body region and captivity status

2. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes

3. American Veterinary Medical Association. (2020).AVMA guidelines for the euthanasia of animals.https://www.avma.org/sites/default/files/2020‐01/2020‐Euthanasia‐Final‐1‐17‐20.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3