Experimental methods in chemical engineering: Monte Carlo

Author:

Pahija Ergys1,Hwangbo Soonho23,Saulnier‐Bellemare Thomas4,Patience Gregory S.4ORCID

Affiliation:

1. Department of Chemical and Biotechnological Engineering Université de Sherbrooke Sherbrooke Québec Canada

2. Department of Chemical Engineering Gyeongsang National University Jinju South Korea

3. Department of Materials Engineering and Convergence Technology (BK21) Gyeongsang National University Jinju South Korea

4. Department of Chemical Engineering Polytechnique de Montréal Montréal Québec Canada

Abstract

AbstractMonte Carlo (MC) methods employ a statistical approach to evaluate complex mathematical models that lack analytical solutions and assess their uncertainties. To this end, techniques such as Markov chain Monte Carlo (MCMC), bootstrap, and sequential MC methods repeat the same operations over a specified range of conditions. Consequently, both the frequentist and Bayesian statistical approaches are computationally intensive, depending on the problem formulation. Improving sampling techniques and identifying sources of error reduce the computational demand but do not guarantee that the solution reaches the global optimum. Moreover, efficient algorithms and advances in hardware continue to decrease computation time. MC methods are applicable to a plethora of problems ranging from medicine to computational chemistry, economics, and industrial safety, making them integral to the ongoing industrial digitalization by evaluating the quality of applied models. In chemical engineering, MC simulations are used in four clusters of research: design, systems, and optimization; molecular simulation, including CO2 and carbon capture; adsorption and molecular dynamics; and thermodynamics. There is limited cross‐referencing between the design cluster and the other three, which presents an interesting area for future research. This mini‐review presents two applications within chemical engineering: emissions and energy forecasting.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3