A framework for estimating the matric suction in unsaturated soils using multiple artificial intelligence techniques

Author:

Wang Junjie1ORCID,Vanapalli Sai1ORCID

Affiliation:

1. Department of Civil Engineering, Room A015 (CBY) University of Ottawa Ottawa Ontario Canada

Abstract

AbstractImplementation of the state‐of‐the‐art understanding of the mechanics of unsaturated soils into geotechnical engineering practice is partly limited due to the lack of quick, reliable, and economical techniques for matric suction measurement. Matric suction is one of the key stress state variables that significantly influences the hydro‐mechanical behavior of unsaturated soils. In this paper, to address this objective, two artificial intelligence (AI) models were developed for estimating matric suction in unsaturated soils based on the particle swarm optimization support vector regression (PSO‐SVR) and multivariate adaptive regression spline (MARS) algorithms. The results suggest that both these models can reasonably estimate matric suction. Compared to the MARS model, the PSO‐SVR model can achieve higher accuracy. Nonetheless, the MARS model facilitates the sensitivity analysis and the selection of essential inputs. A novel integrated framework is proposed and validated, leveraging the strengths, and alleviating the limitations of the PSO‐SVR and MARS algorithms for reliable and rapid estimation of matric suction in the range of 0–1500 kPa for low plastic soils (0 < Ip ≤ 7). Six inputs are required to use this model successfully; some can be measured using conventional laboratory tests, and others can be calculated from mass‐volume relationships.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3