Robust fixed‐point Kalman smoother for bilinear state‐space systems with non‐Gaussian noise and parametric uncertainties

Author:

Wang Xuehai1ORCID,Liu Yage1,Zhao Sirui1

Affiliation:

1. School of Mathematics and Statistics Xinyang Normal University Xinyang People's Republic of China

Abstract

SummaryKalman smoother is an effective algorithm to estimate the state of the dynamic systems with Gaussian noise. However, when the system is affected by non‐Gaussian noise, the traditional Kalman smoother may suffer severe performance degradation, since it is derived from the minimum mean square error criterion. By introducing the maximum correntropy criterion, which accounts for all higher order moments and has the ability to resist non‐Gaussian noise, this article studies the state estimation problem of the bilinear state‐space system with non‐Gaussian noises and parametric uncertainties. The bilinear system with parametric uncertainties is transformed into a linear time‐varying system, and a robust fixed‐point Kalman filter algorithm is derived based on the Cauchy kernel‐based correntropy criterion. To improve the state estimation accuracy, a Cauchy kernel‐based fixed‐point Kalman smoother (CK‐FPKS) algorithm is presented by introducing the backward smoothing. Simulation results show the effectiveness of the proposed algorithm.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3