Test–retest reliability and predictive utility of a macroscale principal functional connectivity gradient

Author:

Knodt Annchen R.1ORCID,Elliott Maxwell L.2,Whitman Ethan T.1,Winn Alex1,Addae Angela1,Ireland David3,Poulton Richie3,Ramrakha Sandhya3,Caspi Avshalom145,Moffitt Terrie E.145,Hariri Ahmad R.1

Affiliation:

1. Department of Psychology and Neuroscience Duke University Durham North Carolina USA

2. Department of Psychology, Center for Brain Science Harvard University Cambridge Massachusetts USA

3. Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology University of Otago Dunedin New Zealand

4. Department of Psychiatry and Behavioral Sciences Duke University Durham North Carolina USA

5. Institute of Psychiatry, Psychology, and Neuroscience King's College London London UK

Abstract

AbstractMapping individual differences in brain function has been hampered by poor reliability as well as limited interpretability. Leveraging patterns of brain‐wide functional connectivity (FC) offers some promise in this endeavor. In particular, a macroscale principal FC gradient that recapitulates a hierarchical organization spanning molecular, cellular, and circuit level features along a sensory‐to‐association cortical axis has emerged as both a parsimonious and interpretable measure of individual differences in behavior. However, the measurement reliabilities of this FC gradient have not been fully evaluated. Here, we assess the reliabilities of both global and regional principal FC gradient measures using test–retest data from the young adult Human Connectome Project (HCP‐YA) and the Dunedin Study. Analyses revealed that the reliabilities of principal FC gradient measures were (1) consistently higher than those for traditional edge‐wise FC measures, (2) higher for FC measures derived from general FC (GFC) in comparison with resting‐state FC, and (3) higher for longer scan lengths. We additionally examined the relative utility of these principal FC gradient measures in predicting cognition and aging in both datasets as well as the HCP‐aging dataset. These analyses revealed that regional FC gradient measures and global gradient range were significantly associated with aging in all three datasets, and moderately associated with cognition in the HCP‐YA and Dunedin Study datasets, reflecting contractions and expansions of the cortical hierarchy, respectively. Collectively, these results demonstrate that measures of the principal FC gradient, especially derived using GFC, effectively capture a reliable feature of the human brain subject to interpretable and biologically meaningful individual variation, offering some advantages over traditional edge‐wise FC measures in the search for brain–behavior associations.

Funder

Health Research Council of New Zealand

Medical Research Council

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3