Machine learning‐enabled optimization of melt electro‐writing three‐dimensional printing

Author:

Abdullah Ahmed Choukri1ORCID,Ozarslan Olgac2,Farshi Sara Soltanabadi1,Dabbagh Sajjad Rahmani1,Tasoglu Savas12345ORCID

Affiliation:

1. Department of Mechanical Engineering Koç University Sariyer Turkey

2. Department of Biomedical Sciences and Engineering Koç University Sariyer Turkey

3. Koç University Arçelik Research Center for Creative Industries (KUAR) Koç University Sariyer Turkey

4. Koc University Is Bank Artificial Intelligence Lab (KUIS AILab) Koç University Sariyer Turkey

5. Koç University Translational Medicine Research Center (KUTTAM) Koç University Sariyer Turkey

Abstract

AbstractMelt electrowriting (MEW) is a solvent‐free (i.e., no volatile chemicals), a high‐resolution three‐dimensional (3D) printing method that enables the fabrication of semi‐flexible structures with rigid polymers. Despite its advantages, the MEW process is sensitive to changes in printing parameters (e.g., voltage, printing pressure, and temperature), which can cause fluid column breakage, jet lag, and/or fiber pulsing, ultimately deteriorating the resolution and printing quality. In spite of the commonly used error‐and‐trial method to determine the most suitable parameters, here, we present a machine learning (ML)‐enabled image analysis‐based method for determining the optimum MEW printing parameters through an easy‐to‐use graphical user interface (GUI). We trained five different ML algorithms using 168 MEW 3D print samples, among which the Gaussian process regression ML model yielded 93% accuracy of the variability in the dependent variable, 0.12329 on root mean square error for the validation set and 0.015201 mean square error in predicting line thickness. Integration of ML with a control feedback loop and MEW can reduce the error‐and‐trial steps prior to the 3D printing process, decreasing the printing time (i.e., increasing the overall throughput of MEW) and material waste (i.e., improving the cost‐effectiveness of MEW). Moreover, embedding a trained ML model with the feedback control system in a GUI facilitates a more straightforward use of ML‐based optimization techniques in the industrial section (i.e., for users with no ML skills).

Publisher

Wiley

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3