A network pharmacology approach to explore the molecular mechanism of active peptide ingredients of Carapax Trionycis on liver fibrosis

Author:

Yan Zhibin1,Zhao Guangyu1,Lin Qihao1,Zhuang Guiping1,Zhu Jiayi1,Jin Juan1ORCID

Affiliation:

1. Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China

Abstract

AbstractCarapax Trionycis is a traditional Chinese medicine and it has been clear that oligo‐peptides from Carapax Trionycis extract (CTP) are the main active substances for the treatment of liver diseases. However, little is known about the mechanism of CTP against liver fibrosis. Here, network pharmacology combined with molecular docking were performed to identify the in‐silico molecular mechanism and the potential targets for CTP to ameliorate liver fibrosis. We collected eight active peptides ingredients that published in public databases and predicted the targets. Liver fibrosis related genes were acquired from the GeneCards and DisGeNET platform. Then, we identified a total of 52 peptides‐liver fibrosis‐related genes. KEGG and GO enrichment analyses indicated that these targets are significantly enriched in relaxin signaling pathway, IL‐17 signaling pathway, TNF signaling pathway. We identified the top 10 genes with high centrality measures from the network by CytoHubba, including CASP3, AKT1, IL1B, MMP9, and PTGS2. The molecular docking between these hub genes and the corresponding CTP was performed in GRAMM and visualized by PyMOL. Our results provide an important reference and scientific basis for treating liver fibrosis with CTP.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Organic Chemistry,Biomaterials,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3