Forecasting interval‐valued returns of crude oil: A novel kernel‐based approach

Author:

Yang Kun12ORCID,Xu Xueqing13,Wei Yunjie12ORCID,Wang Shouyang124

Affiliation:

1. Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China

2. School of Economics and Management University of Chinese Academy of Sciences Beijing China

3. School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China

4. School of Entrepreneurship and Management ShanghaiTech University Shanghai China

Abstract

AbstractThis paper proposes a novel kernel‐based generalized random interval multilayer perceptron (KG‐iMLP) method for predicting high‐volatility interval‐valued returns of crude oil. The KG‐iMLP model is constructed by utilizing the distance based on a kernel function, which outperforms the conventional Euclidean distance. Additionally, the optimal kernel function is estimated using the variance–covariance matrix of the prediction error, contributing to a better understanding of the overall characteristics of interval‐valued data. The introduction of the kernel function renders the algorithms used for estimating machine learning parameters ineffective. Therefore, this paper further proposes a backward distance of accumulative error propagation algorithm to estimate both the kernel function and model parameters, which provides a feasible approach for utilizing kernel function in interval neural networks. In the empirical analysis of weekly and daily returns of WTI crude oil, the superior predictive performance of the proposed method is demonstrated, enabling stable and accurate predictions for both point values and interval values. The model exhibits consistent outstanding performance across different network structures, showcasing the potential of KG‐iMLP for crude oil price forecasting.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3