Effect of printing parameters on the mechanical properties of 3D printed short glass fiber/acrylonitrile butadiene styrene composites

Author:

Rahmati Moein1ORCID,Zolfaghari Abbas1ORCID

Affiliation:

1. Department of Mechanical Engineering Babol Noshirvani University of Technology Babol Iran

Abstract

AbstractThree‐dimensional (3D) printing, or additive manufacturing (AM), is rapidly advancing, allowing for the creation of objects from a digital model through the successive addition of materials. Among the AM techniques, fused deposition modeling (FDM) emerges as one of the most promising and extensively utilized methods. However, the inherent mechanical shortcomings of the deposition of pure thermoplastic materials necessitate the improvement of mechanical properties. One viable approach involves integrating reinforcing fibers into the thermoplastic matrix to create polymer composites suitable for structural applications. In this study, the mechanical properties of acrylonitrile butadiene styrene (ABS) reinforced with short glass fibers (SGFs) printed by FDM were investigated. The aim was to explore the impact of process parameters, including nozzle temperature, number of shells, and print speed, on the tensile properties and interlaminar shear strength (ILSS). Composite filament with 10% weight fraction (10 wt%) of glass fiber fabricated. Also, the mechanical properties of the composite and pure polymer were investigated. The length of the fibers was measured after the extrusion and printing process, revealing that they had been damaged. The shells exerted the most significant influence on test outcomes.

Funder

Babol Noshirvani University of Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3