Plasmon‐Coupled GaN Microcavity for WGM Lasing and Label‐Free SERS Sensing of Biofluids

Author:

Sun Jianli1,Mao Wangqi2,Xia Chuansheng1,Wang Weian1,Cui Qiannan1,Shi Zengliang1,Zhu Gangyi3,Wang Mingliang1,Xu Chunxiang1ORCID

Affiliation:

1. State Key Laboratory of Digital Medical Engineering, School of Chemistry and Chemical Engineering Southeast University Nanjing Jiangsu 210096 P. R. China

2. Key Laboratory of Materials for High‐Power Laser, Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 P. R. China

3. Peter Grünberg Research Centre, College of Telecommunications and Information Engineering Nanjing University of Posts and Telecommunications Nanjing Jiangsu 210003 P. R. China

Abstract

AbstractA signal amplification strategy is always required to improve sensing performance, especially for mass‐prepared, miniature and highly sensitive testing equipment. Herein, an on‐chip integrated biosensor combining microcavity lasing and surface enhanced Raman scattering (SERS) for label‐free biochemical analysis is developed. The gallium nitride (GaN) microrings array is fabricated as a whispering gallery mode microlaser based on totally internal wall reflection, and gold nanoparticles (AuNPs) are further assembled on the cavity surface to confine the optical field synergistically. The improvement of lasing capability indicates the strong light‐matter interaction that is conducive to superior response of biomolecules. As a functional example, a GaN/AuNPs substrate is employed in a urine assay, which avoids the shortcomings of requiring specific reactive reagents on different display modules. Ultimately, the chip not only realizes a wide range of pH (3.6–7.8) identification depending on the ultra‐sensitivity feedback of lasing to the refractive index of liquids, but also significantly enhances SERS signals to enable real‐time determination of the biomolecules in human urine. Even the lowest levels of creatinine (0.02%) can be quantitatively detected in less than a minute; thus this work with dual‐mode spectral analyses realizes rapid diagnosis for urinary systems, as well as provides a more accurate reference for the screening of other diseases.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3