Dynamically Tunable Structural Colors Enabled by Pixelated Programming of Soft Materials on Thickness

Author:

Huang Mengting12,Wang Yifei12ORCID,Liu Xuan12,Zhang Songyu1,Yuan Cong‐Long12ORCID,Hu Hong‐Long3ORCID,Zheng Zhi‐Gang12ORCID

Affiliation:

1. School of Physics East China University of Science and Technology Shanghai 200237 China

2. School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China

3. School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China

Abstract

AbstractStructural colors are widespread in nature and have become an important component of the lives. Considerable efforts have been made toward reversible color tuning, which underpins intriguing applications, including color displays, anti‐counterfeiting, and information encryption. However, the limited size, complicated fabrication processes, and low modulation speeds of structural colors are the main obstacles to their further development. Herein, a facile method to realize dynamically tunable structural colors is presented, which are enabled by the pixelated programming of soft materials on thickness. Pixelated photoresist microarrays with different heights are obtained using a digitalized lithography technique, enabling delicate control over the thickness of the liquid crystal (LC) layers. Stimuli‐responsive LCs endow structural colors with dynamic and reversible tunability and exhibit remarkable switching speeds with external stimuli. The proposed strategy sheds new light on dynamically tunable structural colors and promotes the development of optical anti‐counterfeiting, thermal sensors, and advanced information encryption.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3