Double Gain of Efficient UV‐C Phosphor and Fast Scintillator Based on Pr3+‐doped KY3F10 Nano‐Glass Composites

Author:

Wang Sikai1,Hua Chunshuai1,Wang Lu1,Wang Ci1,Liu Lu1,Ren Jing12ORCID,Zhang Jianzhong12

Affiliation:

1. Key Lab of In‐fiber Integrated Optics, Ministry Education of China Harbin Engineering University Harbin 150001 China

2. National Key Laboratory of Underwater Acoustic Technology Harbin Engineering University Harbin 150001 China

Abstract

AbstractGlassy phosphors offer a promising opportunity to overcome the limits of polycrystalline counterparts, thanks to their merits including excellent optical transparency, abandonment of organic binders, and capability of drawing fibers, etc. However, research and development of glassy UV‐C phosphors and fast scintillators have seriously lagged behind crystals. Here, a new type of efficient UV‐C phosphors and fast scintillators (double gain) is developed from Pr3+‐doped transparent nano‐glass composites (nano‐GCs) containing KY3F10 nanocrystals. Such a material combines favorably the advantages of both crystal and glass, exhibiting intense interconfigurational 5d‐4f emissions of Pr3+ upon deep‐UV, high energy electron‐beam and X‐ray excitations. The emission profile ideally overlaps with the germicidal effectiveness curve. The Pr3+‐doped nano‐GCs are endowed with a radiative decay time shorter than that of extensively studied Ce3+‐doped glasses and nano‐GCs. They exhibit intense X‐ray excited radioluminescence that is comparable to the standard Bi4Ge3O12 (BGO) crystal and significantly stronger than Pr3+‐doped ZBLAN fluoride glass known for the high luminescence efficiency. An X‐ray imaging system with a good spatial resolution using the Pr3+‐doped nano‐GCs is also demonstrated.

Funder

Natural Science Foundation of Heilongjiang Province

Higher Education Discipline Innovation Project

State Key Laboratory of Particle Detection and Electronics

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3