Independent Control of Spectral and Directional Emissivity with Multilayer Structures

Author:

Yu Wenzi1ORCID,Wang Boxiang2ORCID,Gong Zhen1ORCID,Zhao Changying1ORCID

Affiliation:

1. Institute of Engineering Thermophysics School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China

2. 2020 X‐Lab, State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China

Abstract

AbstractUtilizing micro‐nano structures to achieve directional and spectral control of thermal radiation holds significant scientific importance. It may significantly benefit a broad range of applications, including infrared light sources, radiation detection, and waste heat utilization of thermophotovoltaics. However, existing thermal emitters face challenges in realizing narrowband and directional emissivity and lack independent control of angular and spectral selectivity. This study develops a simple but novel approach to thermal emitter design that enables independent control of directionality and emissivity peak of thermal radiation. An angle‐selective filter and a spectral selective emitter are selected as the structural components, and a series of different narrowband and directional thermal emitters are designed to show the advantage of independent tunability. After optimization with the NSGA‐II algorithm, a narrowband and directional thermal emitter is achieved, offering high emissivity only at the given direction and wavelength. An emitter with only seven layers demonstrates a maximum emissivity of 0.97, an angular width under 20°, and a spectral width below 0.025 µm, as validated by angle‐resolved emissivity measurements. This study provides a straightforward and effective route for designing narrowband and directional thermal emitters with promising applications in thermal radiation management.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3